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2 Digital Filters and Subband Synthesis

The PCM output of an MP3 decoder is computed from so called subbands. Each
subband, there are 32 of them, contains the audible sound limited to a very narrow
part of the frequency spectrum. Think of it as a kind of equalizer with 32 sliders; the
first slider is for the lowest sounds and the last slider is for the highest tones. If we
turn down all the sliders except one, we will hear only part of the music, namely the
musical signal limited to a small part of the audible spectrum. This limited part of
the spectrum is a subband. We will be able to hear the music, as it was meant to be,
only if we open all sliders of our equalizer. This will combine all the signals of the
different subbands and will yield the full spectrum.

The musical signal is split into subbands by a digital filter in the encoder and needs
to be recombined in the decoder. To understand this process, we consider a simple
example: We take a sine wave as input signal, were the amplitude at time t is given by
the formula f(t) = sin(2πt). The signal is periodic with period length 1, i.e. the signal
between 0 and 1 is repeated between 1 and 2 and so forth. This signal is periodically
sampled with period length 1/10, i.e. at t = 0.0, 0.1, . . . , 1.0, which yields the values
xi = f(i/10), that is x0 = 0.0, x1 = 0.59, x2 = 0.95, x3 = 0.98, x4 = 0.59, x5 = 0.0,
x6 = −0.59, x7 = −0.95, x8 = −0.98, x9 = −0.59, and x10 = x0 = 0.0, as shown in
Fig. 1.
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Fig. 1: The filter input
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Fig. 2: The filter input and output
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2.1 A Simple Filter

Now we examine the most simple digital filter: The output yi of the filter is computed
by yi = xi + xi+1 from two successive input values. The filters output is shown in
Fig. 2 together with its input.

It is immediately visible, that the output is again a sine wave of the same frequency
but with a different gain (amplitude) and slightly shifted to the left (phase shift).
Employing some useful 9th grade math, or equivalently a tool like Mathematica[28],
one can show that in general

sin(ωt) + sin(ω(t+ δ)) = 2 cos(ωδ/2) sin(ωt+ ωδ/2).

With ω = 2π and δ = 1/10, in our example sin(ωt)) corresponds to xi and sin(ω(t+
δ) corresponds to xi+1, and we have yi = xi + xi+1 = 2 cos(ωδ/2) sin(ωt+ ωδ/2).
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Fig. 3: The filters frequency response
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Fig. 4: Filter outputs for unit-gain inputs

The sin(ωt+ωδ/2) part shows that the filter output is indeed a sine wave with the
same frequency (given by ω) but shifted by ωδ/2 to the left. The factor 2 cos(ωδ/2),
which does not depend on t, is the amplitude of the filter output. It depends on δ
and ω. With a fixed sample rate, given by δ = 1/10, the new amplitude depends only
on the input frequency ω.

Plotting the filters gain 2 cos(ωδ/2) against the frequency of the filter input, we
obtain Fig. 3, called the filters frequency response. It shows that the filter amplifies low
frequencies by almost a factor of two and mutes input signals with higher frequencies
(ω close to 30). Fig. 4 illustrates this effect. It shows the filter output for the three
inputs sin(10t), sin(20t), and sin(30t).

2.2 The Complementary Filter

Next, we consider the complementary digital filter with output y′i given by the formula
y′i = −xi +xi+1. Its filter gain is computed as before and turns out to be 2 sin(ωδ/2).
Fig. 6 shows the frequency response of both filters.

It is clearly visible how it suppresses lower frequencies and boosts higher frequencies.
Both filters together can now be used to separate any input signal into two subbands,
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Fig. 5: The input signal to the left was cre-

ated by adding a low frequency component

and a high frequency component

sin(1πt) + sin(5πt).

This signal was then filtered by the simple

low frequency filter and its complementary

high frequency filter. The results are shown

below.
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one containing high frequency content and the other low frequency content. The input
function sin(1πt)+sin(5πt) is a good example (see Fig. 5). While the separation of low
and high frequencies in the output is clearly visible, it can also be seen that there is
a wide overlap of both filters: the low frequency output still contains some significant
high frequency content and vice versa.
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Fig. 6: Frequency response of both filters
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Fig. 7: Perfect frequency response

Of course, much better filters can be constructed, as we will see, but for now, we
stick to the simple filters and try to find out, how the original signal can be restored
from the output of the two filters. This is the same problem faced by the decoder,
where the output must be computed from the subbands.


